

CATV Amplifier 6/125 Er:Yb-Doped Double Clad Fiber

Nufern's proprietary rare earth doping technology is used to deliver Er:Yb co-doped fibers with industry leading tolerances on the key spectroscopic parameters. This ensures the essential lot-to-lot reproducibility required for volume manufacturing of high power CATV and telecom optical amplifiers at 1550 nm. With a core composition optimized for all pump wavelengths (915–976 nm), these fibers demonstrate high efficiency and high power operation without rollover, enabled by the optimized double clad fiber design.

Typical Applications

· CATV and Telecom amplifiers

Features & Benefits

- NuCOAT™ fluorocrylate coating Greater fiber durability in extreme environmental operating & storage conditions
- Single-mode core design Low splice loss to transmission fiber
- Double clad design High power performance and high power conversion efficiency
- Optimized core composition High 915–976 nm pump efficiency
- Tight mechanical and optical tolerances High yield and uniformity in device manufacturing

Optical Specifications

Operating Wavelength
Core NA
First Cladding NA (5%)
Mode Field Diameter

Mode Field Diameter
Cutoff

Normalized Cross Talk

Cladding Absorption
Core Absorption

Geometrical & Mechanical Specifications

Prooftest Level

SM-EYDF-6/125-HE

PM-EYDF-6/125-HE

1530 − 1625 nm 1530 − 1625 nm 0.180 0.180 ≥ 0.46 ≥ 0.46

 $6.8 \pm 0.8 \,\mu\text{m}$ @ 1550 nm $6.8 \pm 0.8 \,\mu\text{m}$ @ 1550 nm

 $1440 \pm 80 \text{ nm}$ $1440 \pm 80 \text{ nm}$

N/A \leq - 25.0 dB at 10 m @

1300 nm

 0.75 ± 0.15 dB/m at 915 nm 0.75 ± 0.15 dB/m at 915 nm 40.0 ± 10.0 dB/m near 1535 40.0 ± 10.0 dB/m near 1535

nm nm

N/A 125.0 ± 1.0 μm

125.0 ± 3.0 μm N/A 6.0 μm 6.0 μm

 $245.0 \pm 15.0 \,\mu \text{m}$ $245.0 \pm 15.0 \,\mu \text{m}$ $\leq 1.00 \,\mu \text{m}$

Low Index Polymer N/A

N/A Low Index Polymer $\geq 100 \text{ kpsi } (0.7 \text{ GN/m}^2) \geq 100 \text{ kpsi } (0.7 \text{ GN/m}^2)$

The passive version of each fiber is also available

