

photoconductive antenna as photomixer

Photomixing in semiconductors

two monochromatic plane waves at a fixed position z=0

 $\mathbf{E}_1(t) = \mathbf{E}_1 \cdot \cos(2\pi \cdot \mathbf{f}_1 \cdot \mathbf{t})$

 $\mathbf{E}_{2}(t) = \mathbf{E}_{2} \cdot \cos(2\pi \cdot \mathbf{f}_{2} \cdot \mathbf{t})$

with frequency f, and frequency $f_2 = f_1 + \Delta f$, $\Delta f \sim 1 \text{ THz}$

from e.g. two tunable diode lasers

- $I = |E_1(t) + E_2(t)|^2$
- $\cos^2(\pi \cdot \Delta f \cdot t)$

(difference frequency component, "slow" envelope of the optical power)

Conclusions:

- for a vanishing carrier density in the nodes of the optical intensity => relaxation time τ_2 < 1/(2 Δ f)
- high absorption coefficient α of optical power => direct semiconductor: e.g. GaAs or InGaAs
- high carrier mobility $\boldsymbol{\mu}$ for efficient terahertz emission and detection

total electric field from the superposition of the two monochromatic

 $n \sim \alpha \cdot 1$

- n carrier density
- α absorption coefficient I intensity of the optical signal

With an applied electric field at the electrodes the current density is given

- e elementary charge
- σ conductivity
- carrier mobility

For the emitted terahertz field yields:

E_{THz}∼∂j / ∂t

j - current density, E_{THz} - terahertz electric field strength

optical switch

Semiconductors as

Carrier generation

 absorption of photons if E < h · v => creation of electron-hole-pairs

GaAs E_a=1.4eV (870 nm) InGaAs E_a=0.4 .. 1.4eV (870 nm .. 3.2 µm)

interaction with the lattice phonons for $E_{q} < h \cdot \nu$

Relaxation processes

- recombination of electron-holepairs in direct semiconductors (e.g. GaAs): relaxation time $\tau_1 \sim 1$ ns => not suitable for THz-signals
- faster recombination in e.g. low temperature grown GaAs or InGaAs: => due to defects in the lattice relaxation times $\tau_2 \sim 200 \text{ fs} - 500 \text{fs}$

time dependent optical intensity of

 $T = 1/(2\Delta f)$

~ 1ps

the mixed two monochromatic

waves