MgO:PPLN
for efficient wavelength conversion

Periodically Poled Lithium Niobate (PPLN)
contract & custom manufacturing

temperature tuning ovens

crystal mounting kits

oven controllers
Covesion Ltd is a leading manufacturer of Periodically Poled Lithium Niobate (PPLN) materials, including Magnesium Doped Periodically Poled Lithium Niobate (MgO:PPLN or PPMgO:LN) as well as undoped PPLN.

PPLN and MgO:PPLN are nonlinear optical crystals for high efficiency wavelength conversion in the 460nm – 5100nm range. Our proprietary PPLN poling process creates high fidelity grating periods from 4.5μm to 33μm and is ideal for high volume manufacture.

We provide off-the-shelf crystals as well as custom crystals: from R&D requests to high volume OEM designs. Our team of PPLN engineers provide technical consultation and advice to assist in finding the right solution for your application.

Covesion’s optical engineers have designed a range of PPLN crystal clips, ovens, temperature controllers and mounting accessories, providing a complete PPLN system for easy integration into your optical arrangement.

Whether you are building a PPLN system for scientific research or prototype development, Covesion offers a complete PPLN solution designed for quick and simple integration with your laser arrangement.
MgO:PPLN for efficient wavelength conversion

Adding 5% magnesium-oxide to lithium niobate significantly increases the optical and photorefractive resistance of the crystal while preserving its high nonlinear coefficient [1]. This allows more stable operation at visible wavelengths and lower temperature operation than a similar undoped crystal. MgO:PPLN can be operated at temperatures as low as room temperature and in some cases, without temperature stabilisation. With temperatures from ambient up to 200°C, MgO:PPLN offers significantly wider wavelength operation than undoped PPLN.

Specially developed for red-green-blue generation and high power mid-IR operation, our proprietary MgO:PPLN poling process offers high fidelity periods from 4.5μm to 33μm+ and is ideal for volume manufacture. As shown below, our MgO:PPLN domains are poled through the entire thickness of the sample, providing maximum optical aperture.

Our MgO:PPLN crystals are designed to work with a wide range of common laser wavelengths. Each off-the-shelf device includes multiple gratings for flexible temperature and wavelength operation. MgO:PPLN has a wide operating temperature range from 30-200°C.

Crystal lengths are 0.3mm to 1mm for short-pulse femtosecond lasers and 10mm to 40mm for ns to CW systems. Our standard crystals are supplied clip-mounted and off-the-shelf. Custom crystal lengths, thicknesses, AR coatings, and grating designs are also available upon request.

Pictorial representation of a PPLN grating where laser light focused into the grating is converted to another wavelength. This can be achieved with the correct poling period, crystal temperature, and z-axis polarization.

Second Harmonic Generation

- High efficiency frequency doubling of IR lasers to visible and shorter near-IR wavelengths
- Available in 0.5mm and 1.0mm apertures
- Mounted and double-band AR coated

Applications

- Green and blue generation
- Scientific & medical
- Frequency comb stabilization
- Fluorescence microscopy

Our SHG MgO:PPLN crystals are designed to work with a wide range of common laser wavelengths. Each device has several gratings to allow phase matching at different temperatures. The visible wavelength devices contain 5 gratings designed for phase matching of the nominal pump wavelength typically between 30-110°C. Tuning to temperatures up to 200°C allows phase matching to longer wavelengths.

All of our products undergo rigorous quality inspection and are supplied clip-mounted and off-the-shelf. Custom crystal lengths, thicknesses, AR coatings, and grating designs are also available upon request.

Calculated temperature vs. phase matching wavelength tuning curve of MSHG1064

<table>
<thead>
<tr>
<th>part #</th>
<th>pump (nm)</th>
<th>output (nm)</th>
<th>grating periods (μm)</th>
<th>temperature tuning range (°C)</th>
<th>thickness (mm)</th>
<th>standard* lengths (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSHG976-0.5</td>
<td>976 (970–992)</td>
<td>488 (485–496)</td>
<td>5.17, 5.20, 5.23, 5.26, 5.29</td>
<td>30 – 110 (30–200)</td>
<td>0.5</td>
<td>1, 10</td>
</tr>
<tr>
<td>MSHG1030-0.5</td>
<td>1030 (1024–1036)</td>
<td>515 (512–518)</td>
<td>6.16, 6.19, 6.23, 6.26, 6.29</td>
<td>30 – 110 (30–200)</td>
<td>0.5</td>
<td>1, 10, 20</td>
</tr>
<tr>
<td>MSHG1047-0.5</td>
<td>1047 (1040–1064)</td>
<td>523.5 (520–532)</td>
<td>6.48, 6.52, 6.55, 6.59, 6.62</td>
<td>30 – 110 (30–200)</td>
<td>0.5</td>
<td>1, 10, 20</td>
</tr>
<tr>
<td>MSHG1064-0.5</td>
<td>1064 (1058–1080)</td>
<td>532 (529–540)</td>
<td>6.83, 6.86, 6.90, 6.93, 6.96</td>
<td>30 – 110 (30–200)</td>
<td>0.5</td>
<td>0.5, 1, 10, 20, 40</td>
</tr>
<tr>
<td>MSHG1064-1.0</td>
<td>1064 (1058–1080)</td>
<td>532 (529–540)</td>
<td>6.83, 6.86, 6.90, 6.93, 6.96</td>
<td>30 – 110 (30–200)</td>
<td>1.0</td>
<td>0.5, 1, 10, 20, 40</td>
</tr>
<tr>
<td>MSHG1550-0.5</td>
<td>1530 – 1620</td>
<td>765 – 810</td>
<td>18.50, 18.80, 19.10, 19.40, 19.70, 20.00, 20.30, 20.60, 20.90</td>
<td>30 – 200</td>
<td>0.5</td>
<td>0.5, 1, 10, 20, 40</td>
</tr>
<tr>
<td>MSHG1550-1.0</td>
<td>1545 – 1610</td>
<td>773 – 805</td>
<td>19.20, 19.50, 19.80, 20.10, 20.40</td>
<td>30 – 200</td>
<td>1.0</td>
<td>0.5, 1, 10, 20, 40</td>
</tr>
<tr>
<td>MSHG1650-0.5</td>
<td>1605 – 1720</td>
<td>803 – 860</td>
<td>20.90, 21.20, 21.50, 21.80, 22.10, 22.40, 22.70, 23.00, 23.30</td>
<td>30 – 200</td>
<td>0.5</td>
<td>0.5, 1, 10, 20, 40</td>
</tr>
</tbody>
</table>

*custom crystal lengths from 0.3mm to 40mm available upon request
The wide transmission range and non-critical walk-off angle of MgO:PPLN make this material ideal for generating wavelengths throughout the mid-IR.

Based on our standard design layout, our MgO:PPLN OPO and DFG crystals are designed to work with common pump wavelengths at 1064nm and tunable 775nm. Our OPO crystals cover a broad continuous tuning range from the near-IR to beyond 4.5µm in the mid-IR.

Our DFG and OPO crystals undergo quality inspection and are supplied off-the-shelf. Our crystals are AR coated and clip-mounted, ready for use with our ovens and controller.

Custom crystal lengths, thicknesses, AR coatings, and grating designs are also available upon request.

Optical Parametric Oscillation / Generation

- Widely tunable mid-IR from a 1064nm pump source
- Also suitable for DFG
- Temperature tuning 60-200 °C
- Available in 0.5mm and 1.0mm apertures
- Mounted and triple-band AR coated

Applications
- Mid-IR spectroscopy
- Environmental monitoring
- LIDAR & laser counter measures

<table>
<thead>
<tr>
<th>part #</th>
<th>pump (nm)</th>
<th>signal (nm)</th>
<th>idler (nm)</th>
<th>grating periods (µm)</th>
<th>thickness (mm)</th>
<th>standard* lengths (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOPO1-0.5</td>
<td>1064</td>
<td>1410 – 2128</td>
<td>2128 – 4340</td>
<td>27.91, 28.28, 28.67, 29.08, 29.52, 29.98, 30.49, 31.02, 31.59</td>
<td>0.5</td>
<td>3, 20, 40</td>
</tr>
<tr>
<td>MOPO1-1.0</td>
<td>1064</td>
<td>1480 – 2128</td>
<td>2128 – 3785</td>
<td>29.52, 29.98, 30.49, 31.02, 31.59</td>
<td>1.0</td>
<td>3, 20, 40</td>
</tr>
</tbody>
</table>

†OPO mirrors with radius of curvature 100-200mm are available upon request

Difference Frequency Generation

- Mixes wavelengths from a fixed 1064nm and tunable 775nm pump source for a tunable 2400 – 3000nm output
- Temperature tuning 60-200 °C
- Available in 0.5mm and 1.0mm apertures
- Mounted and triple-band AR coated

Applications
- Mid-IR spectroscopy
- Environmental monitoring
- LIDAR & laser counter measures

<table>
<thead>
<tr>
<th>part #</th>
<th>pumps (nm)</th>
<th>output (nm)</th>
<th>grating periods (µm)</th>
<th>thickness (mm)</th>
<th>standard* lengths (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDFG1-0.5</td>
<td>737 – 786 & 1064</td>
<td>2450 – 3000</td>
<td>18.50, 18.80, 19.10, 19.40, 19.70, 20.00, 20.30, 20.60, 20.90</td>
<td>0.5</td>
<td>20, 40</td>
</tr>
<tr>
<td>MDFG2-0.5</td>
<td>775 - 869 & 1064</td>
<td>2853 - 4741</td>
<td>20.90, 21.20, 21.50, 21.80, 22.10, 22.40, 22.70, 23.00, 23.30</td>
<td>0.5</td>
<td>20, 40</td>
</tr>
</tbody>
</table>

*custom crystal lengths from 0.3mm to 40mm available upon request
Many of our undoped PPLN crystal products have now been superseded by our improved range of products in MgO:PPLN. However, we are still continuing to manufacture the following SHG and SFG crystals.

Undoped PPLN has a recommended operating temperature range of 160-200°C. This elevated temperature helps to prevent the onset of the photorefractive damage.

Second Harmonic Generation
- High efficiency frequency doubling of near-IR wavelengths
- 0.5mm apertures
- Mounted and double-band AR coated

<table>
<thead>
<tr>
<th>part #</th>
<th>pump (nm)</th>
<th>output (nm)</th>
<th>grating periods (μm)</th>
<th>temperature tuning range (°C)</th>
<th>thickness (mm)</th>
<th>standard lengths (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHG4</td>
<td>1310 – 1322</td>
<td>655 – 661</td>
<td>12.10, 12.20, 12.30</td>
<td>160 – 200</td>
<td>0.5</td>
<td>1, 10</td>
</tr>
<tr>
<td>SHG7</td>
<td>2024 – 2250</td>
<td>1012 – 1125</td>
<td>29.50, 30.00, 30.50, 31.00, 31.50, 32.00, 32.50</td>
<td>160 – 200</td>
<td>0.5</td>
<td>1, 10, 20</td>
</tr>
</tbody>
</table>

Sum Frequency Generation
- Combines fixed 1550nm and tunable 780nm or 810nm pump sources to provide tunable green wavelengths
- 0.5mm apertures
- Mounted and triple-band AR coated

<table>
<thead>
<tr>
<th>part #</th>
<th>pump (nm)</th>
<th>output (nm)</th>
<th>grating periods (μm)</th>
<th>temperature tuning range (°C)</th>
<th>thickness (mm)</th>
<th>standard lengths (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFG1</td>
<td>775 – 786 & 1550</td>
<td>516 – 521</td>
<td>6.60, 6.65, 6.70</td>
<td>160 – 200</td>
<td>0.5</td>
<td>1, 10</td>
</tr>
<tr>
<td>SFG2</td>
<td>803 – 815 & 1550</td>
<td>529 – 534</td>
<td>7.05, 7.10, 7.15</td>
<td>160 – 200</td>
<td>0.5</td>
<td>1, 10</td>
</tr>
</tbody>
</table>

*custom crystal lengths from 0.3mm to 40mm available upon request

Discontinued PPLN stock
Limited stock is available on the following discontinued lines of PPLN crystal:

<table>
<thead>
<tr>
<th>part #</th>
<th>pump (nm)</th>
<th>grating periods (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHG3</td>
<td>1064</td>
<td>6.50 – 6.58</td>
</tr>
<tr>
<td>SHG5</td>
<td>1550</td>
<td>18.20 – 19.00</td>
</tr>
<tr>
<td>SHG6</td>
<td>1650</td>
<td>19.00 – 21.00</td>
</tr>
<tr>
<td>OPO1</td>
<td>1064</td>
<td>1350 – 1410 & 4335 – 5022</td>
</tr>
<tr>
<td>OPO2</td>
<td>1064</td>
<td>1410 – 1580 & 3257 – 4335</td>
</tr>
<tr>
<td>OPO3</td>
<td>1064</td>
<td>1520 – 2130 & 2126 – 3546</td>
</tr>
<tr>
<td>DFG1</td>
<td>1064 & 742 – 796</td>
<td>2451 – 3160</td>
</tr>
</tbody>
</table>

For information of availability and product specifications, please contact sales@covesion.com

Copyright © 2010-2011 Covesion Ltd

email: sales@covesion.com tel: +44 (0)1794 521 638
web: www.covesion.com fax: +44 (0)8709 289 714
Covesion poling technology provides a versatile basis for the design and manufacture of unique PPLN crystals. Our custom design and fabrication service provides application-specific technical consultation with specialist grating design and contract manufacture, resulting in a wavelength conversion solution tailored to your target laser system. We offer a range of custom design packages including:

- one-off crystals
- OEM prototyping
- large-volume manufacture

Our MgO:PPLN has a wide range of OEM applications:

- **Projector Displays**
 - Pico projectors
 - Laser TV / cinema
 - Head-up displays

- **Materials Analysis**
 - Spectroscopy
 - Colour profiling & digital printing

- **Terahertz Generation**
 - Imaging
 - Spectroscopy

- **Bio-Photonics**
 - Flow cytometry
 - Confocal /CARS microscopy
 - DNA sequencing

- **Construction & Surveying**
 - Rotary levels
 - Pointing & alignment

- **Femtosecond Lasers**
 - Frequency comb stabilization
 - Metrology

Guaranteed Poling Quality

Our patented poling technique enables us to engineer **deep and uniform domains** throughout the entire crystal. This consistent quality is guaranteed from one-off crystals to high-volume OEM devices. Our domain uniformity provides many performance benefits. For example, for **display technology** applications, our high poling quality leads to:

- Increased lumen output
- Reduced component costs
- Long battery life (portable devices)
- Improved display quality
- Colour definition and stability
- High power handling capability
- Larger, brighter displays
- Improved robustness
- Easy package assembly

CARS microscopy image of C. elegans worm

Covesion’s team of optical engineers have designed a range of PPLN crystal clips, ovens, temperature controllers and mounting accessories, providing a complete PPLN system for easy integration into your optical arrangement.

Our PPLN clips are easily mounted into the oven using the auto-locating pins. These also allow the PPLN clips to be swapped in and out with negligible realignment of the optical train.

Several sprung pins in the oven top hold the PPLN crystal clip securely in place. The oven and PPLN crystal can then be mounted in any orientation, flexible to your choice of optical arrangement.

Covesion recommends the OC1 temperature controller for high thermal stability of ±0.01°C. This long-term stability can be maintained at any temperature above ambient to 200°C.

PV oven series

The Covesion PV Oven Series is specially designed to provide secure mounting and robust thermal stability for our PPLN crystals.

<table>
<thead>
<tr>
<th>part #</th>
<th>crystal length</th>
<th>oven length</th>
<th>PPLN clip</th>
</tr>
</thead>
<tbody>
<tr>
<td>PV10</td>
<td>1mm, 10mm</td>
<td>22mm</td>
<td>PC1, PC10</td>
</tr>
<tr>
<td>PV20</td>
<td>20mm</td>
<td>32mm</td>
<td>PC20</td>
</tr>
<tr>
<td>PV40</td>
<td>40mm</td>
<td>52mm</td>
<td>PC40</td>
</tr>
</tbody>
</table>

Key Features

- Auto-locating dowel pins for alignment-free insertion
- Temperature stability of ±0.01°C with OC1 controller
- Various mounting options available

PPLN clip kits

The Covesion PPLN Clip Kits provide secure mounting of our PPLN crystals. All our crystal are supplied clip-mounted and ready for use in our ovens.

<table>
<thead>
<tr>
<th>part #</th>
<th>crystal length</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC1</td>
<td>1</td>
</tr>
<tr>
<td>PC10</td>
<td>10</td>
</tr>
<tr>
<td>PC20</td>
<td>20</td>
</tr>
<tr>
<td>PC40</td>
<td>40</td>
</tr>
</tbody>
</table>

Key Features

- Simple pin-aligned mounting in PPLN ovens
- Uniform temperature distribution
- Spring clips secure the crystal with minimal stress
- ITO coated glass for electrostatic charge dissipation

Each clip kit contains:

- a clip body
- an ITO coated cover glass
- a number of springs and screws
PPLN ovens, temperature controllers and accessories

OC1 temperature controller

The Covesion OC1 temperature controller is a compact stand-alone benchtop unit for use with our PPLN oven range. The auto-detect feature provides hassle-free, plug-and-play functionality. The user can simply dial in the required temperature and allow the oven to reach optimum stability.

Key Features

- Simple push button interface
- Set point stability ±0.01°C
- Set point resolution 0.01°C
- Maximum temperature 200°C
- High stability PID control
- Auto-detect feature for all Covesion PPLN crystal ovens

<table>
<thead>
<tr>
<th>part #</th>
<th>control range</th>
<th>set point resolution</th>
<th>stability</th>
<th>for ovens</th>
<th>input</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC1</td>
<td>near-ambient to 200°C</td>
<td>0.01°C</td>
<td>±0.01°C</td>
<td>PV10, PV20, PV40</td>
<td>90 – 240V AC, 50 – 60Hz</td>
</tr>
</tbody>
</table>

Post mount adapters

Compatible with standard post mounts from major optomechanics suppliers.

<table>
<thead>
<tr>
<th>part #</th>
<th>description</th>
<th>optical height</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVP1</td>
<td>PV10 post mount adapter</td>
<td>25mm</td>
</tr>
<tr>
<td>PVP2</td>
<td>PV20 and PV40 post mount adapter</td>
<td>25mm</td>
</tr>
</tbody>
</table>

Flexure stage adapters

- Compatible with standard flexure stages and mounts from major optomechanics suppliers
- PV oven and adapter have an optical height of 25mm above the flexure stage platform
- Riser plate, RP12.5, increases the optical height of standard flexure mounts from 12.5mm to 25mm

<table>
<thead>
<tr>
<th>part #</th>
<th>description</th>
<th>optical height</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVP1R</td>
<td>PV10 adapter mount for flexure stages</td>
<td>25mm</td>
</tr>
<tr>
<td>PVP2R</td>
<td>PV20 and PV40 adapter mount for flexure stages</td>
<td>25mm</td>
</tr>
<tr>
<td>RP12.5</td>
<td>12.5mm riser plate for flexure stage mounts</td>
<td>25mm</td>
</tr>
</tbody>
</table>
Covesion specialises in the manufacture of periodically poled lithium niobate (PPLN) devices, such as, MgO-doped periodically poled lithium niobate (MgO:PPLN or PPMgO:LN) and undoped PPLN. These PPLN devices are highly efficient mediums for nonlinear wavelength conversion processes, such as: second harmonic generation; difference frequency generation; sum frequency generation; optical parametric oscillation; and other second order nonlinear processes.

Principles

Second order nonlinear processes (Fig. 1) involve the mixing of three electromagnetic waves, where the magnitude of the nonlinear response of the crystal is characterized by the $\chi^{(2)}$ coefficient. Second harmonic generation (SHG), or frequency doubling, is the most common application that utilizes the $\chi^{(2)}$ properties of a nonlinear crystal. In SHG, two input pump photons with the same wavelength λ_p are combined through a nonlinear process to generate a third photon at $\lambda_{SHG} = \lambda_p/2$. Similar to SHG, sum frequency generation (SFG) combines two input photons at λ_p and λ_s to generate an output photon at $\lambda_{SFG} = (1/\lambda_p + 1/\lambda_s)^{-1}$. Alternatively, in difference frequency generation (DFG) when two input photons at λ_p and λ_i are incident on the crystal, the presence of the lower frequency signal photon, λ_s, stimulates the pump photon, λ_p, to emit a signal photon λ_s and idler photon at λ_i with $\lambda_i = (1/\lambda_p - 1/\lambda_s)^{-1}$. In this process, two signal photons and one idler photon exit the crystal resulting in an amplified signal field. This is known as optical parametric amplification. Furthermore, by placing the nonlinear crystal within an optical resonator, also known as an optical parametric oscillator (OPO), the efficiency can be significantly enhanced.

Fig. 1 Second-Order Nonlinear Interactions

Phase matching refers to fixing the relative phase between two or more frequencies of light as they propagate through the crystal. The refractive index is dependent on the frequency of light. Thus, the phase relation between two photons of different frequencies will vary as the photons propagate through the material, unless the crystal is phase matched for those frequencies. It is necessary for the phase relation between the input and generated photons to be maintained throughout the crystal for efficient nonlinear conversion of input photons. If this is not the case, the generated photons will move in and out of phase with each other in a sinusoidal manner, limiting the number of generated photons that exit the crystal. This is shown in Fig. 2. Traditional phase matching requires that the light is propagated through the crystal in a direction where the natural birefringence of the crystal matches the refractive index of the generated light. Despite providing perfect phase matching, this technique is limited to a small range of wavelengths in those materials that can be phase matched.

Fig. 2 Quasi-Phase Matching

PPLN is an engineered, quasi-phase-matched material. The term engineered refers to the fact that the orientation of the lithium niobate crystal is periodically inverted (poled). By inverting the crystal orientation at every peak of the sinusoidal generation, one can avoid the photons slipping out of phase with each other. As a result, the number of generated photons will grow as the light propagates through the PPLN, yielding a high conversion efficiency of input to generated photons (Fig. 2).

The period with which the crystal needs to be inverted (the poling period) depends on the interacting wavelengths and the temperature of the PPLN. For example, a PPLN crystal with a poling period of 6.6μm will efficiently generate frequency doubled photons from 1060nm photons when the crystal temperature is held at 100°C. By increasing the temperature of the crystal to 200°C the same PPLN crystal will efficiently generate frequency doubled photons from 1068.6nm wavelength photons. Thus, changing the temperature of the crystal therefore varies the phase matching conditions, allowing some tuning of the wavelength interaction.

Example uses of PPLN

Optical Parametric Oscillator:

One of the most common uses of PPLN is in an Optical Parametric Oscillator (OPO). A schematic of an OPO is shown in Fig. 3. The common arrangement uses a 1064nm pump laser and can produce signal and idler beams at any wavelength longer than the pump laser wavelength. The exact wavelengths are determined by two factors: energy conservation and phase matching. Energy conservation dictates that the sum of the energy of a signal photon and an idler photon must equal the energy of a pump photon. Therefore an infinite number of generated photon combinations are possible. However, the combination that will be efficiently produced is the one for which the periodicity of the
poling in the lithium niobate creates a quasi-phase matched condition. The combination of wavelengths that is quasi-phase matched, and hence referred to as the operation wavelength, is altered by changing the PPLN temperature or by using PPLN with a different poling period. Nd:YAG pumped OPOs based on PPLN can efficiently produce tunable light at wavelengths between 1.3 and 5μm and can even produce light at longer wavelengths but with lower efficiency. The PPLN OPO can produce output powers of several watts and can be pumped with pulsed or CW pump lasers.

Second Harmonic Generation:

PPLN is one of the most efficient crystals for frequency doubling and is well known for highly efficient green and red generation. It has been used to frequency double pulsed 1064nm beams with up to 80% conversion efficiency in a single pass pulsed system. In CW systems, conversion efficiencies in excess of 50% have been demonstrated in an intracavity arrangement.

How to use PPLN

Crystal length:
The crystal length is an important factor when choosing a crystal. For narrowband CW sources our longer crystal lengths, at 20 to 40mm, should give best efficiency. However, for pulsed sources, a long crystal can have a negative effect due to increased sensitivity to laser bandwidth and pulse duration. For nanosecond pulses, we typically recommend 10mm lengths and our shortest lengths at 0.5 to 1mm are ideal for femtosecond pulse systems.

Polarization:

In order to access the highest nonlinear coefficient of lithium niobate, the input light must be e-polarized, i.e. the polarization must be aligned with the dipole moment of the crystal. This is accomplished by aligning the polarization axis of the light parallel to the thickness of the crystal. This applies to all nonlinear interactions.

Focusing and the Optical Arrangement:

Since PPLN is a nonlinear material, the highest conversion efficiency from input photons to generated photons will occur when the intensity of photons in the crystal is the greatest. This is normally accomplished by coupling focused light into the center of the PPLN crystal through the end face of the crystal at normal incidence. For a particular laser beam and crystal, there is an optimum spot size to achieve optimum conversion efficiency. If the spot size is too small, the intensity at the waist is high, but the Rayleigh range is much shorter than the crystal. Therefore, the size of the beam at the input face of the crystal is large, resulting in a lower average intensity over the whole crystal length, which reduces the conversion efficiency. A good rule of thumb is that a CW laser beam with a Gaussian beam profile, the spot size should be chosen such that the Rayleigh range is half the length of the crystal. The spot size can then be reduced in small increments until the maximum efficiency is obtained. PPLN has a high index of refraction that results in a 14% Fresnel loss per uncoated surface. To increase transmission through our crystals, the crystal input and output facets are AR coated, thus reducing the reflections at each surface to less than 1%.

Temperature and Period:
The poling period of a PPLN crystal is determined by the wavelengths of light being used. The quasi-phase-matched wavelength can be tuned slightly by varying the temperature of the crystal.

Covesion’s range of off-the-shelf PPLN crystals each include multiple different poling periods, which allow different wavelengths to be used at a given crystal temperature. Our calculated tuning curves give a good indication of the required temperature for phase-matching. The temperature dependence of conversion efficiency follows a sinc² function, describing a crystal temperature acceptance bandwidth (Fig. 5). The longer the crystal, the narrower and more sensitive the acceptance bandwidth. In many cases the efficiency of the nonlinear interaction is very sensitive to within a few degrees Celsius.

![Fig. 5 SHG intensity temperature dependence for 1064nm pump in a 20mm long MgO:PPLN crystal](image)

The optimum temperature can be determined by heating the crystal to e.g. 10°C higher than the calculated temperature and then allowing the crystal to cool whilst monitoring the output power at the generated wavelength.

The Covesion PPLN oven is easy to incorporate into an optical setup. It can be paired with Covesion’s OC1 temperature controller to maintain the crystal temperature to within ±0.01°C, providing highly stable output power.

MgO:PPLN vs undoped PPLN

Undoped PPLN is usually operated at temperatures between 100°C and 200°C, to minimize the photorefractive effect that can damage the crystal and cause the output beam to become distorted. Since the photorefractive effect is more severe in PPLN when higher energy photons in the visible part of the spectrum are present, it is especially important to use the crystal only in the recommended temperature range.

The addition of 5% MgO to lithium niobate significantly increases the optical and photorefractive resistance of the crystal while preserving its high nonlinear coefficient. With a higher damage threshold, MgO:PPLN is suitable for high power applications. It can also be operated from room temperature up to 200°C, significantly increasing the wavelength tunability of the device. Moreover, in some special cases, the MgO:PPLN can be operated at room temperature and without the need for temperature control.

Covesion’s team of poling experts have over 10 years experience in the manufacture of PPLN for off-the-shelf, custom, and OEM customers. Featuring a comprehensive suite of proprietary technology for the design and manufacture of periodically-poled materials, Covesion continues a legacy of quality and innovation started by our parent company, Stratophase in 1999.

Our PPLN engineers have extensive knowledge in the design and build of PPLN-based laser systems for Red-Green-Blue and mid-IR applications.

Featuring a comprehensive suite of patents & know-how for the design and manufacture of periodically-poled materials, Covesion is committed at all times to the delivery of high quality functional products, achieved by investment in knowledge and technology.

Contact us for your tailor-made wavelength conversion solution.

tel: +44 (0)1794 521 638
fax: +44 (0)8709 289 714
email: sales@covesion.com

www.covesion.com